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300. The Application of the Frictional-coeficient Formalism to 
Diffusion in Binary Mixtures of Neutral Substances. 

By H. J. V. TYRRELL. 

The relation between the three diffusion coefficients of a binary mixture 
is shown to take the simple form, often termed the Hartley-Crank equation, 
if the frictional coefficients Cll, Cz2,  and C12 obey the relation C:2 = <11<22. 

The statistical-mechanical theory of Kirkwood and Bearman is discussed in 
the light of this conclusion, and it is shown that the “ Hartley-Crank” 
equation may be obeyed even when the excess volume of the mixture is non- 
zero. Some recent experimental results on diffusion in binary mixtures 
of gases and of liquids are reviewed, and the practical difficulties of obtaining 
satisfactory numerical values of frictional coefficients are discussed in the 
light of these. 

TRANSPORT of material by diffusion in a binary non-electrolyte system is usually described 
in terms of three coefficients which can be derived directly from experimental measurements. 
They are the differential mutual diffusion coefficient D,,, which is a measure of the rate 
of interdiffusion of components 1 and 2, and the self-diffusion coefficients D1* and D,*. 
Much effort has been spent on the analysis of the magnitudes of these coefficients and a 
number of more or less simplified models proposed. This diffusion-coefficient formalism, 
however, though the oldest, is by no means the only possible one; material flows can, 
for example, be expressed as linear combinations of the gradients of chemical potential 
in the system multiplied by Onsager coefficients, as in the usual form of non-equilibrium 
thermodynamics. Alternatively, the chemical potential gradients (grad pi) can be 
written as linear combinations of relative matter flows multiplied by “ frictional 
coefficients.” 

Several slightly different definitions have been used for these, c.g. ,  Klemm’s coefficients 1c 
(Y*), and Laity’s Id (C ik ) ,  are defined as: 

-+ 
where Nk,  ck, and vk are, respectively, the molar fraction, the molarity, and the absolute 
velocity of component k.  The differences between these definitions are slight and the 
choice of which to use in any instance is determined by convenience. Laity’s formulation 
is used here. Symmetry arguments suggest that Cik = ti, and, if this is so, there are 
$ j ( j  -+ 1) independent coefficients in aj-component system. For a mixture of two neutral 
components it can be shown I d  that 

and 

vRT * - 
Dl - “11 + N2M’ 

where ZJ is the mean molar volume. ill is, strictly, the frictional coefficient between normal 
and labelled molecules of component 1. These equations do not involve any assumptions 
about the change in volume on mixing of the two components, except insofar as the 
coefficient D,, of (2a) requires to be identified with the experimental diffusion coefficient.2 

1 (a)  Onsager, Ann. N.Y. Acad. Sci., 1945, 46, 2-11; (b)  Lamm, J .  Phys. Chenz., 1957, 61, 948; 
(c) Klemm, 2. Naturforsch., 1953, Sa, 397; ( d )  Laity, J .  Phys. Chem., 1969, 63, 80; J .  Chem. Phys., 
1969, 30, 682. 

a Tyrrell, “ Diffusion and Heat Flow in Liquids,” Butterworths Scientific Publns., London, 1961, 
Chap. 3. 
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If we write 

then equation (2) can be transformed into 

The question of the relation between the three diffusion coefficients of a binary system 
has had much attention, and a number of derivations of the following equation, frequently 
but not quite correctly referred to as the Hartley-Crank equation, have been proposed: 

(4) Did. - N D 
12 - 2 1* + N p z * .  

All these derivations involve unstated or physically obscure  assumption^.^ From the 
purely phenomenological point of view, (3) reduces to (4) if 

N,C&D2* + NlC,,D,* = V E T ,  
a condition which, it is easy to show, is equivalent to the requirement that 

r,*c22 = r 4 2 .  (5) 
If <11'532 > <f2, then D\$ > N2D1* + N,D2*, and vice-versa. 

The statistical-mechanical theory of transport processes, developed by Kirkwood, 
employs frictional coefficients of the above form, defining them in terms of the equilibrium 
radial distribution function & ', and the variation of the pair-wise potential Vij between 

molecules i and j with the magnitude r of the vector distance I separating them, as 
--f 

$#), I,$#) are scalar coefficients in a first-order expansion in spherical harmonics of the pair 
correlation function g:j'. With certain assumptions, Bearman 4 9 5  has shown that ratios 
of frictional coefficients can be expressed in terms of integrals which are, in principle, 
calculable, e.g. : 

A similar equation applies for Cz2D,*, and, from these, it follows that 

vRT 

If equation (4) is to hold, the left-hand side of this equation must be unity, and hence 

or 
and (7) 

u1 and v, are the partial molar volumes of the components in the mixture. In general 
the integrals I ,  and I ,  are dependent on composition, but equation (7) limits their depen- 
dence to a particular form. Combination of (6) and (7) gives 

a (a) Dark&, Tram. Anter. Inst. Min. (MetaEZ.) Engrs., 1948, 175. 184; (b)  Prager, J .  Chew. Phys., 
1963, 21, 1344; (c) Barrel-, J .  Phys. Chem., 1957, 61, 178; (d)  Carman and Stein, Tvans. Faraday SOC., 
1956, 52, 619. 

4 See, e.g., Bearman, J .  Phys. Chew., 1961, 85, 1961. 
Bearman,  .I. C h m .  Plzys., 1960, 32, 1308. 
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This is consistent with condition (5) but cannot be deduced from a purely phenomenological 
theory. Furthermore, from (2) and (S), 

D1"/D2* = v,/v,. (9) 
Equations (8) and (9) were derived by Bearman 5 who showed that I ,  and I ,  are indepen- 
dent oE composition if (i) the radial distribution functions are independent of mole fraction 
at  constant temperature and pressure and (ii) if there is no volume change on mixing. 
Expressions (8) and (9) then follow at once from (6). The present argument shows that 
equations such as (4), (8), and (9) may be obeyed even when a volume change does occur 
on mixing, provided that the appropriate partial molar volumes are used instead of molar 
volumes. Horrocks and McLaughlin have calculated mutual diffusion coefficients for 
the system carbon tetrachloride-cyclohexane, using Bearman's equations, and claim that 
better agreement with experiment is obtained if partial molar volumes are used, though it 
must be admitted that the improvement in this particular case is small. 

Frictional coefficients are also helpful in considering the recent data of Miller and 
Carinan on gaseous mixtures.' They have shown that, for binary mixtures of krypton, 
carbon dioxide, and dichlorodifluoromethane with hydrogen, the heavier component 
being denoted by suffix 1, l/D,* is a linear function of N,. This confirmed the equation, 
bascd on kinetic theory, 

where (Ill*)" is the self-diffusion coefficient in the pure component, since D,, is virtually 
independent of composition for gaseous mixtures. Since such mixtures are almost ideal, 
it follows from equation (2) that 

1 / q *  = N,/(D,*)" + N,/D,,, (10) 

and 

If <,,/v, is independent of composition, equation (10) follows from equation (11); for these 
mixtures, this is almost equivalent to saying that Ill should be independent of composition. 
Miller and Carman have obtained self-diff usion coefficients for the heavier components 
and the mutual diffusion coefficients, but self-diffusion coefficients for hydrogen have not 
yet been obtained. There seems no reason why these should not also obey equation (lo), 
and, if this proves to be so, <22 should be independent of concentration also. If both 
equations (4) and (10) are also to be obeyed simultaneously it is necessary that 

(Dl*>"(D2*)" = D;z. 

This would permit the calculation of the self-diffusion of pure hydrogen from the existing 
data on mixtures. The results are shown: 

CO, -H2: 3.16 cm., sec.-l 
I<r -H2: 4-55 cm., sec.-l 

CF,C12 -H2: 3.62 cm.2 sec.-l 

and are much too high. At 2 8 8 " ~  the diffusion coefficient of deuterium in hydrogen is 
1.24 cm.2 sec.-l, and at  2 7 3 " ~  that of ortho- in para-hydrogen is 1.285 cm., sec.-1.* 
Apparently equation (la),  and hence also (4), cannot apply to these mixtures. This 
conclusion was reached by Miller and Carman, apparently solely on the grounds that 
equations (10) and (4) must always be incompatible, which is not the case. 

These examples show the usefulness of the frictional-coefficient concept in the discussion 
of general questions. However, their numerical calculation for real systems is beset with 
difficulties. The most suitable liquid mixtures to test equations (4), (S), and (9) would be 

Horrocks and McLaughlin, Trans. Furaduy Soc., 1962, 58, 1357 

Jost, " Diffusion," Academic Press, New York, 1952, p. 430. 
' Miller and Carman, Trans. Furaduy SOC., 1961, 57, 2143. 

3 F  



1602 Application of the Frictional-coe ficient Formalism, etc . 

mixtures of liquefied rare gases, but data on these are only beginning to become a~a i l ab le .~  
Complete diffusion studies have been carried out by Miller and Carman lo on three mixtures, 
namely, bromobenzene-benzene, nitromethane-benzene, and nitromethane-carbon tetra- 
chloride. The first of these obeys Raoult’s law closely, though there is a small contraction 
in volume on mixing, while the other pairs are non-ideal. To judge from the graphs in 
the original papers these careful diffusion measurements show a variation on replicate 
experiments of never less than &2%, and sometimes as much as &S%. If the proportional 
errors in Di$ and D* (that is, the ratio of the standard deviation to the mean magnitude) 
are assumed to be the same, and are denoted by P, the usual rule for combination of errors 
gives 

(D%)2 + (4* )2N22 .p2 ,  (c1dcd2 = (Di$ - D1*N2)2 

o112 is the variance of Cll. 
approximate form of this is : 

This tends to infinity as N ,  approaches zero and, even at  N ,  = 0.5, (oll/Cll) is 53P. I t  is 
tempting to adopt the variation of the ratio (C11C22/C122) from unity as a measure of the 

Since 0:; and Dl* are of the same order of magnitude, a suitable 

(~ll/Cll)2 = P2(1 + NS2)/N12. 

A 
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System benzene (1)-bromobenzene (2) at  25”. Variation of certain frictional 
coefficient functions with concentration. 

0 , Dl*Cll x , D2*CZ2 (left-hand scale) A ,  C11/C22/C122 (right-hand scale). 

departure of the system from the norm represented by equations (4), (8), and (9). How- 
ever, the ratio of the standard deviation of this quantity to the magnitude of the ratio 
itself is, with the above assumptions, 

this reaches a minimum value of 3-74P at  N = 0.5 and increases to infinity a t  either end 
of the concentration range. Thus, to obtain a satisfactory set of frictional coefficients 
it is essential to achieve a very high standard of precision in the measurement of the three 
diffusion coefficients. There is no doubt that such data are not a t  present available for 
any system. The Figure shows values of D,*Cll, D2*C2,, and (c11C22,/C12) calculated for benzene 

Bearman, J .  Phys. Chem., 1962, 66, 379. 
10  Miller and Carman, Trans. Faruday SOL, 1959, 55, 1831, 2838, 
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(1)-bromobenzene (2) mixtures from the graphs given in reference 10. The last quantity 
should be unity if equation (4) is obeyed strictly; over the region round LV = 0.5 where 
experimental errors have least influence i t  seems to be a little greater than this. D,*C,, is 
very constant except at N ,  = 0-1 (the influence of experimental error is very large in this 
region), while D,*C,, seems to show a distinct rise as the bromobenzene becomes more 
dilute. Similar curves for the other systems studied by Miller and Carman have been 
calculated but show no very striking differences. The only possible conclusion is that, 
with existing data, the calculation of frictional coefficients is not a very profitable exercise. 
On the other hand, the examples in the earlier sections of this paper show that they can 
be of considerable use in general discussions of diffusion. 
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